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5.1 Introduction

One cannot help but be impressed by the engineering, by evolution, of the
cellular machinery. The cellular program that governs cell o.%o_o and cell
development does so robustly in the face of a mso.ﬁcmcnm Q:SBH._BQE msaw
energy sources. It integrates numerous signals, chemical and otherwise, each o
which contains, perhaps, incomplete information of events that :.6 oo: must
track in order to determine which biochemical subroutines to c:s.m on- and
off-line, or slow down and speed up. These signals, which are %.:éa ?.VE
internal processes, other cells and changes in the extracellular mzaﬁw::mr mmzé
asynchronously and are multi-valued; that is, they are not merely ‘on’ or ‘off” but
have many values of meaning to the cellular apparatus. The cellular v.ﬂomBB
also has a memory of signals that it has received in the past, m.ca of its own
particular history as written in the complement and 8:8:?.3_.03 of chemi-
cals contained in the cell at any instant. These characteristics of robust,
integrative, asynchronous, sequential and analog control are the rw:E.me of
cellular control systems. Below, arguments will be made that there is m._mo
another characteristic of such control systems: there is often an ?ﬂm@&im
“ nondeterminism in their function that, besides leading to differences in timing of
cellular events across an otherwise genetically identical (isogenic) cell popula-

tion, can also lead to profound differences in cell fate. The circuitry H.:.&
implements these control systems is a network of interconnected chemical

reactions. Included in these reactions are the genetic reactions E<.o_<m=m” the
gene expression reactions such as transcription manmmoaw mem.o:m: o_o.smm-
tion, and translation; gene rearrangements such as UZ? inversion _,o&o:oaw
and epigenetic control reactions such as DNA Bﬁ.rﬁmﬁ_os. Enzymatic reac-
tions, biosynthetic and mechanochemical Eﬁoawoﬁo:.m, mca« a host of other
chemical reaction types also are central elements of this control system.
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This chapter focuses on biochemical systems in which spatial concentration
distributions and purely mechanical interactions are ignored or are not pres-
ent. A full specification of cellular function is gained by (1) the determination of
all the chemical parts making up the system, (2) the deduction of the mechan-
isms of interactions between these parts, and (3) the designation of the par-
ameters necessary to describe the physics of all of these mechanisms. However,
this specification, which theoretically could produce a computer simulation
that exactly predicts the temporal behavior of all cellular constituents, repre-
sents a full understanding of the cellular system no more than a fully specified
model of a Pentium chip gives us an understanding of the principles of its
designs and function. In the case of the Pentium, understanding is best
achieved by grouping individual transistors into logic gates, gates into devices
such as counters, registers, and amplifiers, and then these devices into large
devices such as arithmetic logic units, multiplexers/demultiplexers, clocks and
bus controllers. The function of the chip can then be described by a relatively
high-level programming language that makes clear the interactions between
these composite devices and allows for a vastly simplified mathematical analy-
sis. To achieve progress toward the description of cellular function on a similar
basis is the ultimate motive for the work presented here.

5.1.1 Research goals

The work described herein represents efforts whose goal is the deduction of the
engineering principles and logic of large biochemical reaction networks.
(BRNG). Specifically, the capacity of BRNs is explored (1) to sense and respond
to multiple time-varying and conflicting signals (often chemical concentra-
tions) in a robust and timely manner as well as (2) to execute internal develop-
mental and behavioral programs. Two complementary types of analysis are
presented. First, the utility of the circuit analogy for BRNs is examined and
methods for the dissection of large networks into ‘functional units’ or ‘devices’
discussed. For this purpose, the device physics for a number of recurrent
regulatory architectures is outlined to provide some background. In addition,
the role of thermal noise in determining chemical reaction outcomes in cells is
shown to be significant, especially for reactions involving genetic material. All
these analyses assume that the individual components and their interactions
have already been identified. However, this is often not the case. Thus, in
addition, I briefly describe experimental methods for deducing BRN structures
and assigning groups of chemicals into composite devices. The methods are
designed to produce these deductions from measurements on the whole chemi-
cal reaction system rather than by breaking the system into small pieces.
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Methods of network deduction and analysis are of special importance now
that many genome projects are completing the inventory of all of the cellular
proteins and genetic regulatory systems. If the full promise of these projects, i.e.,
to uncover the program of cellular life, is to be realized, it is necessary to
compose these parts into functioning networks whose temporal behavior we
may understand, whose properties we can control, and whose failures we can
diagnose and ameliorate. Analytical tools such as the ones described herein, and
in other contributions to this volume, lay the groundwork for this endeavor.

5.2 The circuit analogy and network analysis

In biology we are faced with often very complicated networks of interacting
components. Ignoring atomic levels of detail, the lowest-level ‘devices’ in a
BRN are often the individual chemicals and the set of reaction channels.
Perhaps the best-characterized biochemical network of such devices is inter-
mediary metabolism. Figure 1a is taken from Peter Karp’s and Monica Riley’s
EcoCyc database of Escherichia coli (E. coli) metabolism, and is a representa-
tion of this network wherein every circle in the diagram represents one of the
small organic molecules transformed in the course of metabolism, each black
line represents a (possibly reversible) chemical reaction that converts one set of
small organics into another (Karp et al., 1999). Each grey line indicates that the
connected circles are the same species of molecule that appears in multiple
pathways. The macromolecules and macromolecular complexes that catalyze
these conversions are not shown nor are the regulatory interactions that allow
combinatorial control of the rate of one reaction by a set of other chemicals in
the network. Were these components to be included in the diagram it would
resemble Figure 1b; the diagram would be black with interactions. This
highlights the main difficulty in forming a qualitative understanding of how
metabolism actually works: biochemical systems are highly nonlinear and
interconnected and composed of large numbers of chemical components. It is
natural, therefore, to look for other systems that have these properties and ask
whether we can apply the tools developed for their analysis to biochemical
systems. Because diagrams of BRNs bear some resemblance to electronic
circuits, it is tempting to ask whether it is possible to map them onto analogous
electrical or electronic circuits so that we may apply the well-developed
methods of electrical circuit analysis, the theory of computation and Boolean
algebra. The subsequent section discusses some current methodology for the
analysis of BRNs, and similarities to and differences from electrical engineer-
ing analyses.
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Mass Transfer in Metabolism + Regulatory Interactions

Figure 1. >. biochemical reaction network. (a) The left panel shows all the mass
:}m:ﬁoqﬁmco: reactions of E. coli intermediary metabolism from EcoCyc (Karp et al
._ 999), _u.oﬁm:_m of the enzymatic reactions, the enzymes themselves and the _‘oa_:m.ﬁoc.m
Interactions are not shown. If they were to be included, the vast number of m:.ﬁ%mo:osm
would make the diagram appear black as suggested in the right panel (b).

5.2.1 Comparisons of electrical and chemical networks

In this chapter, the words ‘circuit’ and ‘network’ are used somewhat inter-
changeablyto meana group of elements that have some property that is affected
dynamically by interaction with other elements. In electrical circuits, these
o._oBoEm are, for example, resistors, capacitors, wires, and power sources. A
signal in these networks is a voltage (or current) received at some node in the
:QSE,F such as one lead of a resistor. Different signals are distinguished by the
different points at which they impinge within the circuit and sometimes by their
88@03_ pattern. In all cases, the currency of signals in electrical networks is
.nm_‘:oa by electrons. In chemical circuits, elements are, for example, enzymes,
10ms, reaction channels, and DNA. A signal in a chemical network is composed,
most often, of the appearance of an amount of some chemical species at a point
in :.:w network such as at an allosteric regulatorysite of an enzyme. The currency
o.w signals in chemical networks is not uniform. It is the individual concentra-
tions and chemical potentials of the particularspecies interacting at that point in
the network. This lack of common currency for information transfer is one of the
complications of BRNs: different chemical signals are often distinguished only
by their interaction specificities with other members of the network.

This suggests another one of the significant complicating differences be-
tween electrical and chemical circuits. In electrical circuits, component types
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(e.g., resistors) are used over and over again, with or without the same physical
parameters, but sharing common substrates and products (i.e., electrons).
Whereas, in (nonspatial) chemical circuits, though the underlying reaction
motifs of first- and second-order reactions are used again and again, the
parameters, substrates and products for each reaction are unique to that
reaction. That is, electrical circuits are constructed out of a toolkit of standard
parts whose physics are well understood and are designed to take on a limited
set of values. In contrast, chemical systems are constructed from many unique
pieces whose physical parameters are not immediately obvious. This complica-
tion in the analysis is even worse if one tries to make an analogy between
chemical and digital electronic circuits.

5.2.1.1 Digital and analog circuitry

There are a number of instances when the behavior of a biochemical system is
such that it suggests digital rather than analog circuitry. The distinguishing
feature of a digital circuit is that the signals within a circuit take on discrete
values rather than a continuum. Thus, the major benefit of a mapping of a
chemical circuit to a digital one is the reduction in the number of states
(state-space) of the constituent concentrations and activities that must be
considered for analysis. The powerful machinery of Boolean algebra and
digital circuit analysis can then be brought to bear on the problem. In addition,
it is computationally more efficient to simulate Boolean networks than to
simulate differential equations. At some level, all chemical signals might be
considered digital, since their values are discrete; that is, their values are
measured in numbers of molecules (per unit volume). However, the number of
states available to a chemical signal in a kinetic network is usually far greater
than two. We are usually concerned with large numbers of molecules so that
individual reaction events cause changes in the number of molecules, which are
very small, compared to the average, and thus can be approximated as infini-
tesimal or continuous changes of a concentration variable. (Important excep-
tions to this are discussed in Section 5.2.3.3). This is no different from disre-
garding the quantal nature of electrons flowing through an electrical circuit,
because their numbers are so large in metal wires. Even neglecting the discrete
nature of chemistry, the dynamics of a chemical system might be such that it is
sometimes feasible to treat the system as a digital circuit.

Cooperative enzyme activity The typical example often used to justify Boolean
approximations in biochemistry is the cooperative enzyme. For simplicity,
consider the cooperativity to be in the action of an allosteric effector on the
maximal activity of the enzyme. In this case, for various models of cooperativ-
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ity, the maximal activity of the enzyme is a sigmoidal function of the effector
concentration. If the sigmoid is very steep (high cooperativity), then it looks
much like a &w&@&& function — zero below a critica] value of the effector
8:.8::«:5:v and some constant, nonzero value above it. E,o€o<9. for this
‘switch’ in enzyme activity to be truly Boolean (digital) two criteria wbcmﬁ be
met: (1) the effector concentration signals must cause the effector to transit
from values well below the critical value to values well above it (or vice versa)

and (2) the time spent in the transition region of the sigmoidal activity oEém
should be small compared with the response time of the receptive system. If the
first of these criteria is not met, then small variations in effector oocooi.nmc.on
could omsmo. entry into the transition region resulting in large fluctuations in
enzyme mocsg thus destroying the two-state property of the system. If
owmwmom in the effector concentration fail to cross the transition region, then
again the two-state behavior is ill defined. If the second criterion is zs?_vm_r&

then the .Eﬂomuﬁom activity of the enzyme during the transition time Bmm_um
cmo.o_.,:o significant to the receptive process. This means that these intermediate
activity values cannot be ignored and so this ‘switch’ becomes multi-valued at
.comﬁ AmeoaBom this criterion is violated in very fast electronic circuits where-
in oon.mﬂ.c components are fast enough to ‘see’ the transition time of a transis-
tor. Digital designs that fail to take this into account will fail.)

7.?5@_@ signal encoding F inally, another complication of applying digital
.&m:m: analysis to chemical networks of even ‘switch-like’ reaction mechanisins
is the following: unlike most electronic digital systems, for each signal-recep-
tive mechanism, the value of an ‘On’-signal is, in general, different from other
systems that also might receive that same signal. For example, one kind of
enzyme might become active above a calcium jon concentration, [Ca?*], of
10uM, and another one only above 100 uM. F unctionally, then, there wam at

least three significant values for the [Ca2*] signal: below 10 uM, between 10

and 100 uM, and above 100 UM. The dynamics of the [Ca?*] signal might co,
such that it is driven very rapidly from 0 to greater than 100 uM; in which case

Q.Ho early m.@sm_.aSQ of the first enzyme is only mcbomogzw important if the

difference in activation time between the two enzymes is significant. In chemi-

cal systems, where there are many different chemical signals whose value

ranges and time scales are all unique, discerning the ‘logic’ of the network is

even more difficult and dependent on the exact parameters of the system.

5.2.1.2 Synchronous and asynchronous design

A mﬂ: point of contrast between engineering principles of electrical or, more
specifically, electronic circuits and biochemical ones is the use of synchronous
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designs. The majority of sequential (as opposed to combinational) digital
designs rely on a system clock for synchronization of processes. In digital
design, clock synchronization is considered desirable for two reasons. First,
susceptibility to noise is improved, since the transient dynamics of component
devices that occur before the edge of a synchronizing clock pulse do not affect
circuit function. Second, the different delays of various signals through a
circuit to their respective outputs can be ignored, since the time between
clock-pulses in a synchronous circuit is generally set to be longer than the
longest delay; thus outputs are not read until all signals have reached their
destination.

With very few exceptions, biochemical circuits are unclocked; that is, asyn-
chronous. Even when there seems to be a central oscillator, such as that
underlying the timing of the cell cycle, microscopic examination of the process
reveals a large variability in timing of the oscillations. Progressive dephasing
arises both due to noise in the underlying processes (see Section 5.2.3.3) and the
fact that the cell cycle oscillator has check points so that the cycle does not
proceed until all necessary subprocesses have completed their work. Since
cellularly uncontrolled variables such as externally available nutrients control
how fast certain of these processes can be executed, the cell cycle is designed to
be tolerant to these metabolically induced large changes in timing. Interest-
ingly, electronic asynchronous design (traditionally used for interface circuits)
has become increasingly popular as circuit size and complexity has increased.
The reasons cited by electrical engineers for asynchronous circuit design are
precisely the reasons a biological circuit would be expected to be asyn-
chronous. Five such reasons are stated by Myers (1995):

Average case performance: The clock period for synchronous systems must be set long
enough so that the circuit can accommodate the slowest operation possible even
though the average delay of an operation is often much shorter. Asynchronous
circuit designs allow the speed of the circuit to change dynamically. The speed of the
circuit is, therefore, governed by average case delay.

Adaptivity to processing and environmental conditions: Since variables such as tempera-
ture change with the environment, circuit up-time and processing rate, and circuit
component speeds can be greatly affected by such changes, synchronous designs
must be simulated under a wide range of conditions and the clocking set so that the
circuit functions under the widest range of variation. Asynchronous designs, in
contrast, are adaptive and speed up and slow down as necessary.

Component modularity: In asynchronous systems, components (functional subcircuits)
can be interfaced without the difficulties of synchronizing clocks necessary in
synchronous systems. Also, when a new version of a component with different
timing is developed, the old component can often be replaced without requiring any
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other changes in the rest of the system. In other words, the system is robust to (some)
changes in its component circuitry.

Elimination of clock-skew: In large digital circuits, the time it takes a clock pulse to
reach .&ﬁoaoa parts of the chip can be different, leading to loss of synchronization
To .E:EENo this skew in arrival times, a great deal of extra circuitry must vo.
designed in. (Nearly a third of the silicon area is required for clock distribution in a
U.mO Alpha microprocessor.) Asynchronous circuits are tolerant to signal timin,
differences among components. :

hes\.mw ﬁaﬂm‘: power requirements: Since they do not require all the extra clock
o:mEEr. asynchronous circuits reduce synchronization power. They can also be
easily adjusted to make use of dynamic power supplies.

. The m.m<m=$mom of asynchrony have to do, then, with robustness to changes
in the circuit environment and in the dynamical state of its various compo-
nents and efficiency both in speed and energy. The noise-filtering behavior of
mﬁ.pornoso:m design is an advantage only because clocks make rejection of
noise and transients relatively easy to design. Asynchronous circuits can be
designed to be as stable to spurious signals. It is likely that biochemical circuits
have evolved for this robustness, efficiency and adaptability to environmental
changes. It is not surprising, therefore, that most biochemical circuits are found
to be .mm%:orﬂoso:m. However, even wholly digital, asynchronous circuits are
notoriously difficult to analyze. Thus one can expect similar difficulties for |
analog Eworgmo& circuits. On the other hand, study of biological circuits
may provide unthought of stable electronic asynchronous circuit designs and
any analytical tools developed for the biological circuits may have »Eéo.mzo:
to the electronic ones and vice versa.

5.2.2 Device function and state

Metabolic charts like the one in Figure 1a are daunting in their complexity, but
perhaps no more daunting in topological complexity than the schematic for a
modern computer chip. The difference between these two interaction maps is -
that the device physics for every element on the chip schematic are fairly well
characterized. The behavior of the circuit is fully specified by these physics and
Eo ?s.oc.oabm and reliability of the chip can be probed efficiently using
simulation tools such as the SPICE software package (Tuinenga, 1995). Even
better, because of the precisely designed physical characteristics of these el-
Q.H_oimv their function may be partially abstracted into a higher-level language:
&@.ﬂ& w.c&maz logic. Thus, most analyses do not need to include the aﬁmzma.
differential equations that most completely describe transistor function. In-
stead, the device details can be abstracted to a higher level, ie., to ﬁonmoz.ﬁ as
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logic gates. Circuits composed of such gates can be grouped together to form
higher-level devices whose input/output behavior can be derived and used
without reference to the exact mechanism from which this behavior is derived.
This type of grouping of subnetworks into functional components greatly
facilitates the analysis of the larger circuit. One challenge, then, for the analysis
of biochemical and genetic networks is to dissect complex networks into
individually analyzable devices that can be hooked back together to predict
the total system behavior.

What, then, constitutes a device? In electrical circuits, elementary devices are
objects such as wires, resistors, capacitors and inductors. In digital circuits,
elementary devices are parts such as transistors and gates. Perhaps, the defin-
ing property of a device is not that it may be separated physically from its
network, but rather that the physics of the device may be derived for a general
case without reference to the precise dynamics of the rest of the network in
which it might be embedded. Resistors, for example, must always obey Ohm’s
law and Kirchoff’s laws, no matter the circuit in which they are used (within
broad limits). These laws, along with perhaps some equations for effects of
dissipation on the resistivity of the material, fully specify the device function.
Practically, this results in the need for only a single parameter to characterize a
resistor, the resistance. This value is the same no matter how the circuit
elements up- and downstream are functioning,

A single chemical reaction step is an elementary device in a chemical
network in much the same way as a resistor is an elementary device in an
electrical circuit. A single number may characterize the behavior of the reac-
tion: the rate constant. Though it is possible to describe the reaction event in
much more detail, via quantum mechanics, collision theory, etc., it is generally
not necessary. Just as with the resistor, the rate constant for a given elementary
reaction does not depend, to first approximation, on the other reactions going
on around it. Vast networks of chemical reactions such as in metabolism or
during signal transduction, then, are circuits of these elementary devices in
which each device accepts chemical concentrations as inputs, and outputs
chemical fluxes. This is conceptually different from digital devices that accept
voltage and output voltage. Electronic devices, on the one hand, simply feed
their output voltage to the ‘voltage receptor’ on the downstream device.
Chemical reactions, on the other hand, convert concentration to flux; the
output must be reconverted to concentration for input to the next device. In
the elementary case, it is both the upstream and downstream elements together
that dynamically determine- this conversion of the upstream flux to instan-
taneous chemical concentration and, thence, the downstream flux.
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5.2.2.1 Elementary electronic and chemical devices

The main advantage of a device description is that composite devices may be
constructed out of a ‘basis’ set of elementary devices. A simple, but informative,
example from electronics is the voltage divider, the most primitive of power
supplies (Figure 2a). The output of the voltage divider is a voltage and current,
and the voltage is given by ¥}, R,/(R; + R,). Next to the divider is represented
a chemical analogy (Figure 2b) that, here, let us call the ‘A’ buffer. If we assume
that the steady-state concentration value of reaction species A, [A], is the
output to this device, then its value is given by k,[B]/k, (this circuit can both
divide and amplify the signal [B]). ‘
The voltage divider can be considered a device only if the circuits driven
from its output do not affect its function. This is only the case if the down-
stream devices, the load, have very high impedances compared to R,. Figure
2d shows these devices as a single load with resistance, R, connected from the
output of the divider to ground. This arrangement puts R, in parallel with R,;
thus the two resistances can be combined into one (as guaranteed by
Thevinin’s theorem) that has an effective resistance of R,R,/(R; + R,). Thus,
when R, > R, the effective resistance is equal to R,. In this case, the voltage
divider remains an intact device. However, as the load resistance decreases, the
value at the output of the device becomes more and more dependent on the
properties of the devices to which it is attached. Similarly, in the ‘A’ buffer
(Figure 2b), if A is consumed by a third reaction then this reaction rate must be
very small compared to k, in order for the chemical device to remain intact. If
many other reactions consume A, then the sum of their rate constants must be
much less than k,. On the other hand, consider the case when A is an allosteric
effector of a set of enzymes downstream. Assuming binding to the enzyme is a
reversible step, the steady-state [A] is unaffected by the interaction with the
downstream enzymes. Seemingly, then, this chemical device remains intact
when connected to the rest of the network in this way. However, the time it
takes to achieve the steady-state value of [A] after ‘turning on’ the device (by,
for example, adding a catalyst required for B-to-A conversion) increases as the -
concentrations and binding constants of the downstream enzymes increase.
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F mmc.ao 2. Examples of electrical and chemical ‘voltage dividers’. For explanations see
text in Section 5.2.2.1.
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Thus, some aspects of the device function are changed by connection to the rest
of the network. In summary, any analysis of devices dissected from the rest of a
large network, therefore, relies on recognizing when these changes are signifi-
cant and when they are not.

Composite devices like the voltage divider (or the ‘A’ buffer) serve not only
as recognizable units of function but also as a means for simplifying circuit
analyses. For many analyses of circuits containing the voltage divider, the two
voltages (V,, and V,,,), the current (I), and the two resistor parameters (R, and
R,) can be replaced by the single parameter, V. There are no approximations
in this simplification, the single parameter is derived directly from the device
physics of the underlying components. If we see two resistors and a power
supply in the same configuration as shown in Figure 2a, and we can see that the
downstream impedances are high, then we know that we need only measure
the output voltage in order to determine the central functionality of the circuit.
That is, we do not need to determine the particular resistances R, and R, or
the properties of the power supply to obtain the circuit function. This ability to
reduce the number of physical measurements that must be performed on the
system is of special importance in the biochemical case. Here, it is often at great
expense in time and resources that a particular variable can be determined
quantitatively and in vivo.

Often, reductions in number of parameters or in the dimensionality of a
dynamical system are fundamental steps in analyzing the overall function of
the circuit. If these reductions are derived directly from the device physics as
above, then much of the circuit behavior is retained in the new simplified
circuitry. But sometimes, especially in biology, such reductions remove im-
portant experimental features of the system. Again, an analogy from elec-
tronics provides the simplest explanation. Consider the voltage divider in
Figure 2c: here, R, has been placed in parallel with R,. Application of the
parallel resistor rule allows us to replace this circuit with one identical in
structure with that shown in Figure 2a in which the top resistance is R, R;/
(R, + R,). However, the reliability of the reduced circuit is much different from
that of the full circuit. Failure of the top resistor is catastrophic for circuit
function in the reduced circuit, whereas failure of both R, and Rj is necessary
to completely destroy the function of the circuit in Figure 2c. The chemical
version, in which the parallel resistor paths are two different reaction channels
that convert B to A, shows the same sort of sensitivity. This has important
implications: for example, biologists know that debilitating mutations in a
protein, assumed here to control one of the reaction channels, may not be
lethal to the function of the whole network.

Signal processing by biochemical networks 123

3.2.2.2 Definition of state in electronic and chemical networks

F E&._v.n an important concept for circuit analysis of chemical networks is the
definition of state. We distinguish between the state of a particular input or
output, the local state, and the state of the system, the global state. In digital
o_wo:oﬂ.:o@ local states can take on only two values, 0 and 1. The m.::o ow the
system isa vector of the local states for each distinguishable input and output
In chemical systems, nominally the local state is often the value of a _.umaoz_mn.
oo:oo.sﬁmao: that may take on any positive-indefinite number. The global
state is the vector of concentrations of all chemically distinguishable species in
the system. Each global state is also associated with properties such as dynami-
cal mEUEQ and type (stable node, stable focus, limit cycle, etc.) This theoreti-
owz% infinite state-space of a chemical system makes :mvw:&%mmm extremel
&m.mo:.: compared with digital systems. However, the dynamical mzw
mHQoEoEo.Eo structure of the system may strongly restrict the range of
concentrations that can be reached by any particular chemical species.

miRE-..n in an enzymatic futile cycle As an example consider the circuit
shown in ﬁmﬁo 3a. This is a standard futile cycle in which a protein, here
labeled A, is phosphorylated by another protein, called a kinase (B) mz.:m then
mscmwncozzw dephosphorylated by a phosphatase or by hydrolysis. mﬂ is called
a futile cycle because it takes energy (usually in the form of adenosine triphos-
EES.“ ATP) to achieve the unidirectional phosphorylation step only to have it
seemingly wasted when the protein mﬁoambmosm_w dephosphorylates. The
total amount of A and A-p (4,,,) remains constant. This is the first Rm:,m.onoc

(@) ®» .
H>Hmm 10

5

B-p
A A-p
x___“

10 15 20

[B-p]
MM_WH_R W (a) > mmEEo futile cycle in an enzyme-based reaction system. This configur-
auon o meo:on.m (ie, a Rmc_mﬂoQ.mREﬁooaao or motif) is a ubiquitous control
ure found in many prokaryotic and eukaryotic signal transduction circuits.

(b) The stationary-state concentration of A. [A i
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[B-p]. For details see text in Section 5.2.2.2. LAl unetion of B-p concentration,
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on the state of the system: concentrations of A, [A], and A-p, [A-p], are
restricted between 0 and A,,,. As shown in Figure 3b, the kinetics of the system
represented in Figure 3a are such that there is a sigmoidal transition from high
[A] to low [A] as a function of the concentration of B-p, [ B-p]. The steepness
of this sigmoid is largely dependent on the fraction of the [ B-p] range in which
the kinase and phosphatase reactions are both saturated (thus, causing the
system to enter a state called ‘zero-order ultrasensitivity’; ZOU). Thus the
smaller the dissociation constants of A and A-p from their respective enzymes,
the more the curve in Figure 3b resembles a Boolean step function. In the case
of high ZOU, then, it may be reasonable to say that, in the steady state, the
variable A takes on two states, low and high, whose physical values are roughly
0 and A, respectively. However, the applicability of this simplification de-
pends ultimately on the mu\wﬁaﬁ of B-p. Even if the changes in [B-p] were
slow enough, compared with the dynamics of the futile cycle, such that the
cycle was always near the steady state, [A] only functionally has two states if
two further conditions are met. First, the controlling physiological changes in
[ B-p] must cross the threshold region of the [A] steady-state curve completely,
and, second, some downstream targets of A activity respond differentially to
the high and low states of [A] (or [A-p]).

Bistability and hysteresis The chemical switch represented by Figure 3a is a
‘soft-switch’. That is, it is not a true bistable state. Rather, [B-p] is a control
parameter that smoothly transforms the single steady-state solution of the
kinetic equations from a high to a low value. However, one change in the
circuit topology (the addition of another reaction) and small quantitative
changes in the circuit parameters convert this soft-switch to a ‘hard-switch’, a
truly bistable system. The reaction in Figure 4a is identical with that of Figure
3a, with the exception of a positive feedback that allows A-p to catalyze the
phosphorylation of A. When the strength of this positive feedback is low, i.e.,
when the maximal rate is a small fraction of the maximal rate of B-p-catalyzed
phosphorylation, the switch behaves nearly identically to the ‘soft-switch’
(compare Figures 3b and 4b). However, relatively small changes in the strength
of the feedback cause a strong qualitative change in the behavior of the switch.
Figure 4c shows the case where the feedback strength has been doubled. The
switch now exhibits hysteresis: the [B-p] at which A switches from high to low
is different from the [B-p] at which A switches from low to high. In Figure 4d
the feedback strength has been doubled yet again and now the switch is
irreversible. Once a switch changes from high to low, switching back from low
to high is now physically impossible with B-p as the sole control parameter.
These qualitative changes in behavior can have profound effects on the func-
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Figure 4. A biochemical ‘switch’. (a) The same futile cycle as in Figure 3 is shown:
however, here the phosphorylated from of A catalyzes its own production. Uaﬁos&nm
on Em.oxmoﬁ value of the feedback strength, this system can behave either exactly like
the futile 88_@. in Figure 3, or generate true bistability with its attendant hysteresis and
‘memory’ at higher feedback strengths. (b—c) A family of stationary-state concentration
curves for A as a function of B-p concentration. For details see text in Section 5.2.2.2.

tion of the rest of the network in which this ‘hard-switch’ is embedded. These
qualitative changes may result from changes in kinetic parameters of well
under an order of magnitude. The addition of the positive feedback in Figure
4a may seem to be a large perturbation to the system represented in Figure 3a,
but such topological changes in a network structure can be found in control
processes that occur in ‘real’ biological systems. For example, the pp125 focal
m&ﬁ&os kinase (FAK), a cytoplasmic tyrosine kinase-transducing signal in-
Em:& by integrin engagement and G-protein-coupled receptors, is alterna-
tively spliced (and more highly expressed) in brain tissue. Some alternative
splices that are preferentially expressed in brain tissue have an increased
autophosphorylation activity, suggesting that FAK may have properties that
are specific to neurons. It has been suggested that these isoforms of FAK may
play an increased role in turn over of point contacts in motile or invasive cells.

Limiting assumptions and caveats The analysis of the futile-cycle switches
above assumes that they may be treated as self-contained subcircuits whose
dynamics may be analyzed without reference to the rest of the network in
which they are embedded. The first caveat to this assumption arises from the
ambiguity of the functional definition of the state of A and A-p discussed above.
For example, simply because a bifurcation analysis predicts that a system is
bistable does not mean that both states are used by the biological system. The




126 A. P. Arkin

second caveat comes from the concept of chemical device impedance discussed
above. Connection of this device to downstream targets (by reaction with A or
A-p) should not disrupt the function of the device. However, for this device it is
not so easy. Consumption of A or A-p, or rapid equilibrium binding to
downstream targets, can destroy or greatly alter the bistable behavior of this
circuit. This particular type of switch suffers more from the fan-out problem
than even the voltage divider in the circuitry discussed above (Figure 2b).
Because the total amount of A and A-p is conserved, a connection with enough
downstream targets can cause the partition of 4, into the target-bound forms,
thus driving the circuit out of the bistable region, and resulting in the destruc-
tion of the switch-like properties.

However, once one is convinced that it is reasonable to analyze a chemical
subunit as a self-contained device, there are many available methods for
predicting the classes of possible circuit behaviors. For example, full solution
of the differential equations, bifurcation analysis, and stoichiometric network
analysis, all provide means for predicting the range of qualitatively different
states that the circuit dynamics may achieve. The sets of kinetic parameters
required to switch between each of these states, and control the exact position
within, may sometimes be derived as well. ,

One of the criticisms often leveled at quantitative analysis of biochemical
and genetic networks is that one needs measurements of all the mechanisms
and of the possibly hundreds of kinetics parameters for those mechanisms, and
that obtaining these data is nearly impossible in vitro, let alone in vivo. The
response to this is three-fold: (1) using the analyses just mentioned, it is possible
to derive limited classes of behaviors that even relatively roughly measured
networks may express; (2) these same analyses can sometimes yield sets of
parameter estimates each of which specifies a range of parameters necessary to
achieve each qualitatively different behavior; and (3) since most of the BRNs
that govern cellular function must be robust to often large fluctuations in the
environment and to molecular noise in their own apparatus, chemical circuit
behavior should not be overly sensitive to the exact values of each of the
kinetics parameters; otherwise there would be a high rate of. cell failure. The
detailed study of these circuit motifs yields a better qualitative understanding
of how a biological pathway is controlled and, as shown below, may point to
biologically important physical phenomena that have not yet been fully con-
sidered by bench biologists. Further, experimental observation of a particular
dynamic behavior may suggest that one or few types of regulatory motifs are
responsible for the behavior. Knowledge of how the different motifs achieve a
particular behavior can then lead to targeted experiments to differentiate
among them.
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5.2.3 Regulatory architecture, motifs, and circuit elements

In this section, I outline some of the work we have done on identifying
common control architectures and elements-in biochemical systems. It is an
underlying assumption that these elements have evolved to perform one or
more specific functions that are useful to an organism. One indicator that these
elements are ‘functions’ is that their architectures recur across organisms and
across pathways within a single organism. Not only does identification of the
elements simplify the analysis of larger BRNs but they also provide a basis set
from which researchers might possibly construct custom networks that per-
form novel functions. The following is far from a complete set of such devices.
They are chosen simply to illustrate what sorts of network function can be
realized by biochemical systems.

5.2.3.1 Single enzymes and enzyme networks

Enzymes and other proteins are examples of how a single molecule or a small
molecular complex may be a fairly complicated chemical device. The presence of
an enzyme that catalyzes a simple Michaelis—Menten-type reaction is described
by an already-composite chemical device composed of three elementary reac-
tion steps. Ifan enzymeis considered a device initself, then its inputs are (at least)
its substrates and effectors, and its outputs are the rates of product generation.
These output rates are usually, but not always, monotonically increasing or
decreasing, saturating functions of the various substrates, inhibitors and ac-
tivators. That is to say, the outputs are often sigmoidal functions of the inputs. In
the extreme case, sigmoid functions look like step functions and, therefore, it is
tempting to use a Boolean truth-table to describe their function rather than the
full enzymological description (Arkin and Ross, 1994). Even if the sigmoid func-
tions are not so steep, they resemble various models of computational ‘neurons’.
Thus, networks of such enzymes resemble these formal neuronal networks
(Bray, 1990). In fact, Hjelmfelt and Ross have demonstrated the equivalence ofa
particular parameterization of the example given in Figure 3a to a McCul-
loch—Pitts artificial neuron, and they showed how to make various computa-
tional circuits out of interconnected networks of these elements (Hjelmfelt et al.,
1991, 1992; Hjelmfelt and Ross, 1992). On the basis of these results, in collabor-
ation with F. Schneider, they experimentally implemented a chemical neuronal
network made out of bistable chemical reactions with a dynamical function
similar to the futile cycle, as discussed in Section 5.2.2.2 (Hjelmfelt et al., 1993).
Furthermore, Bray (1990) has suggested that the neuronal network-like proper-
ties of chemical parallel-distributed processes may help to explain, in part, the
reliability and evolutionary adaptability of these networks.
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Finally, it is worth noting that some protein-based devices have dynamics
fundamentally different from the standard enzymological mechanisms. Mol-
ecular machines such as polymerases, ribosomes, and kinesin can be very
intricate molecular devices. New techniques are allowing the quantitative
measurement of the microscopic and mesoscopic dynamics of motion of these
molecular complexes on their macromolecular substrates (Guthold et al., 1994;
Yin et al., 1995; Bustamante and Rivetti, 1996; Wang et al., 1997). However,
consistent models of the in vivo dynamics of these machines are still in their
infancy. The initial attempts to treat mathematically the dynamics of various
of these molecular motors and their input/output behavior have laid a good
foundation against which to test future measurements and models (Peccoud
and Ycart, 1995; Peskin and Oster, 1995; Astumian and Bier, 1996; Duke and
Leibler, 1996; McAdams and Arkin, 1997; Arkin et al., 1998; Goss and Pec-
coud, 1998). One of the interesting common dynamical phenomena found in
these machines is that their operation is fundamentally stochastic. A similar
observation is made when examining the function of, for example, ion channels
(Collins et al., 1995). Noise in the operation of these devices, as is discussed
further below, necessitates a consideration of robustness and reliability in the
design of cellular signal-processing networks.

5.2.3.2 Biochemical oscillators

Biochemical oscillators are found to play a number of roles in the control of
cellular and organismal behavior (Berridge and Rapp, 1979; Rapp, 1979). The
most pervasive form of oscillator in biology is the cell cycle oscillations that
underlie repeated patterns of cell growth and division (Borisuk and Tyson,
1998; Novak et al., 1998). Though the chemical network that drives a particu-
lar cell cycle is usually not a ‘free running’ oscillator in that it is regulated by
checkpoints that can stop, slow or even redirect the cycle (e.g., in order to wait
for unsynchronized processes to catch up, to deal with damages and stresses in
the cell or to change the chemical pathway responsible for the cell cycle in
different cell types), at root is a chemical system capable of repeatedly leaving
and very nearly restoring an initial condition. Biochemical oscillations are
also found in mitochondrial volume, in yeast glycolytic flux (Jonnalagadda et
al., 1982), in GTP/G-protein activity, in cytoplasmic calcium concentrations,
in neuronal signaling, in circadian rhythms (Goto et al., 1985; Ouyang et al.,
1998) and in certain reconstituted enzyme systems such as horseradish per-
oxidase (Stemwedel et al., 1994; Hung and Ross, 1995). These oscillations have
many different functional roles in the cells in which they are found. Timing
and synchronization are the most obvious ones. However, there is some
evidence that oscillatory dynamics can reject noise while propagating signals,
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and that the frequency and amplitude of an oscillation can carry information
that can be decoded by chemical frequency filters like the ones discussed
further below. Thus, these oscillators are signal generators whose output can
be modulated in amplitude, frequency and phase by chemical, thermal and/or
light inputs.

Ross and co-workers have attempted to classify chemical and biochemical
oscillators into a finite set of classes distinguished by their network topology
and their responses to various experimental perturbations (Eiswirth et al.,
1991a,b). Chémical species within such oscillator devices are classified as
essential or nonessential depending on whether or not quenching of their
oscillatory behavior destroys the overall ability of the network to support
oscillation.

These classification methods demonstrate a number of the advantages of a
device analysis. They provide a theoretical framework for understanding the
different ways in which chemical systems can provide oscillatory signals. They
also provide an ordered set of diagnostic experiments by which a novel,
oscillatory chemical species may be classified in a small number of experimen-
tal steps. This classification, then, severely restricts the underlying mechanisms
and their parameterizations that give rise to the experimental observations.

5.2.3.3 Genetic regulatory circuits

In 1961, at the Cold Spring Harbor Symposium in Quantitative Biology,
Jacob and Monod first outlined a circuit theory of* genetic control in
prokaryotes (Monod and Jacob, 1961). The basic theory describing combina-
tional control of transcription initiation, expression of polycistronic operons
and feedback control as a basis for control of metabolism, growth and develop-
ment remains largely unchanged today. Most of the basic mechanisms pro-

posed are used in prokaryotes and eukaryotes alike, although eukaryotic gene
control has a few more levels of complexity to it. The central process is the

transcription of DNA to RNA via the multiprotein complex RNA polymerase

(RNAP), and then the translation of RNA to protein via transfer RNA and .
ribosomes. Transcription can be broken up into at least two processes: tran-

scription initiation and transcript elongation. Translation can be broken into

three processes: translation initiation, protein elongation and transcript degra-

dation. Each of these processes may, in turn, be regulated by cellular signals.

Transcription initiation The best characterized of these controls is the regula-
tion of transcription initiation. Initiation begins from a region of DNA calied
the promoter, upstream (at the 5’ end of DNA) from the genes of interest. In
prokaryotes, this is most often accomplished by the binding of proteins,




transcription factors, to sites on the DNA called operator sites. The pattern of
transcription factors bound to sites can modulate both the strength with which
RNAP binds to the promoter and the rate at which it begins transcription. The
number of patterns (states) of the promoter can be quite large. For example,
the & phage Py/Pg, control region is composed of two promoters and three
operator sites (shown schematically in Figure 5). The operator sites can bind
homodimers of two proteins, Cro and CI with different affinities. The region
can have 40 different configurations of RNAP, Cro, and CI, bound, each of
which is characterized by its stability (free energy) and its transcriptional
activity (Ackers et al., 1982; Shea and Ackers, 1985).

It is tempting to think of these states as 40 different logical states of a
complex Boolean switch that transmits a set of RNA signals when particular
sets of transcription factors are present or absent. In some cases, this may
indeed be a good approximation, but a number of issues need to be addressed
before such an abstraction is made. Most important is probably the time that
a given configuration of transcription factors and RNAP at a given promoter
persists. In many cases, in prokaryotes, these proteins are assumed to be in
rapid equilibrium with their respective binding sites. The binding dynamics of
RNAP to its promoter, especially, is likely more complicated than this; how-
ever, empirically this does not seem to be a bad approximation in most cases.
In this approximation, the 40 molecular configurations of Pg/Pry are sampled
many times in between transcription initiation events. The total time spent in
any configuration is related to its stability. Thus an average transcriptional
activity may be calculated for any instantaneous concentration of proteins.
The thermodynamic and kinetic parameters for the Pr/Prum Promoters have
been determined (Ackers et al., 1982: Shea and Ackers, 1985). The graph of
Py activity as a function of CI, and Cro, concentrations, [CI,] and [Cro,],

’

Cro, binding affinity

<+

Qm binding affinity

Figure 5. The organization of the Pyand Py, divergent promoters from bacteriophage
M. The gene products of ¢I and cro dimerize, then bind to operator sites (OR;, OR, and
OR;) in the promoter region with differential affinities. The pattern of CI,, Cro, and
RNA polymerase binding to the operator and promoter sites determines the frequency
of transcription initiation from Py, and Py
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Rmﬁoo:{&% is shown in F igure 6 for a constant (available) RNAP concentra-
.:A.uu & 30 nM. This plot summarizes the ‘control logic’ for transcription
E:.:m:ms at Py The 40 ‘Togical’ states of the promoter region are not directly
5&.20 in this activity curve. The smoothness of this curve arises because of the
3@.& equilibrium assumption. Were the transcription factors ‘sticky’ (i.e., were
Em.:, wm.mﬁmm from DNA comparable with or slower than the rate 9,“ UHES-
mo:@:os. Initiation), then the timing (order) of CI and Cro binding would
become important and a time-independent control surface could not be plot-
ted. F :.zroh the activity of Py, as a function of CI, is not a monotonically
.mmHE,m:sm function. Instead, as [CL,] increases, the activity of Py, at first
Eo.aommmm“ then decreases. There are, then, at least three ?zomosm:u\s&mﬁmi
regions of [CI,] and a Boolean abstraction of this ‘switch’ could not necessar-
ily map [CL,] into a single binary variable. In addition, as discussed above

the appropriateness of a Boolean approximation to this curve is dependent o:,

the time it takes the effector molecules to traverse from their initial to final
values and vice versa.
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The logic of Pgy, (and its inextricably linked partner, Py) is relatively com-
plex for prokaryotic operators and promoters. The logic of eukaryotic tran-
scription initiation dynamics can be far more complicated than even this. One
example, schematically illustrated in Figure 7, was reported for the endo-16
gene involved in endodermal formation in sea urchin development. The pro-
moter has at least 15 different protein input signals that regulate expression by
binding to six different binding regions upstream from the RNAP binding site
(Davidson et al, 1998; Yuh et al., 1998). In addition to these modes of
regulation, eukaryotes also can regulate the more global organization of their
nuclear genome by, for example, controlling the acetylation of histones, there-
by remodeling the chromatin structure. The larger number of genes found in
eukaryotes as compared to prokaryotes is not the only or even the best

measure of organismal complexity.

Transcript elongation and degradation The signal that is controlled by the
promoter logic is ‘Produce Transcript’. Often this is interpreted to mean “Turn
Gene Product On’. That is to say, it is often loosely thought that genetic
networks are composed of promoter logic elements interconnected by the
transcription factors that are the ultimate product of activity from many of the
constituent promoters. But there are other factors that must be considered
before such an abstraction can be made. After transcription initiation, there
are numerous mechanisms of elongation control, including terminators and
antiterminators (regions of DNA at which a transcribing RNAP can fall off the
template, or at which RNAP can be modified to be resistant to such termina-
tion, respectively), downstream binding sites for proteins that block a proces-
sive RNAP, and RNAP pause sites. In polycistronic operons, mostly found in
prokaryotes, these can lead to strong polarity effects in which there is higher
expression of transcripts proximal to the promoter than for those that are
distal. Further, each gene in the transcript may or may not have its own

At least 15 different
DNA binding proteins

Figure 7. Diagram of the promoter control of the sea urchin endo-16 gene involved in
early embryogenesis. Derived from Yuh et al. (1998).
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:.._uomoBo binding site and degradation rate. Thus each gene can express
m_.ummnoi numbers of proteins per transcript. Further, in prokaryotes, transla-
co: of a protein product from a transcript is often tightly coupled to Hmm:mo:.@-
tion. Production of protein rapidly follows production of transcript. In eu-
wm@oﬁom, this coupling is much weaker, since many processes can act on a
given transcript before and after it is exported from the nucleus to be trans-
lated. The correlation between the concentration of transcript and its protein
product is lower in eukaryotic systems. In all cases, protein products may or
may not be actively degraded. All these processes have to be taken into
account before realistic models can be constructed.

mncormm:n processes in gene regulation There is one further level of complex-
ity to the genetic machinery that must be carefully considered. Many of the
.Eo._ooiom that control gene expression are often present in small numbers
Sm_am the cell. The genes themselves are usually present in only one or a few
copies. Further, the genetic reaction rates are often rather slow compared to
the 05.9. biochemical reactions inside the cell. These facts indicate that a
aﬂawa::mm:.o chemical kinetic treatment of these reactions may not always be
possible and that the discrete molecular nature of the expression machinery
and their thermal fluctuation must be taken into account as well (Kampen
Gmﬁ Ko, 1991, 1992; Peccoud and Ycart, 1995; McAdams and Arkin Soqw
Arkin m.H al., 1998; Goss and Peccoud, 1998). Consider, for example, the wmﬂo om,
:.m:moz@mos initiation from Pg,. The maximum activity of Pyy shown in
Figure 6 is about 0.007 open-complexes/s; that is, one transcript initiation
about every 2.5 min on average. This occurs at [CI,] of the order of 200nM
and at [Cro,] of zero. However, during early . phage development [Cro uu
and [CI, ] are generally less than 100nM. In E. coli, which has a om:“ <o_czm0
of approximately one femtoliter, 1 nM corresponds to about one molecule
only. Given that a well-fed E. coli cell has a cell cycle time of about 20 min
ﬂrm.ﬁ are, on average, fewer than ten transcription initiations from a ?E\u
mo.:.<m..am Pru per cell division. However, the actual number of transcription
::.:m:omm from Py, is most likely a stochastic process. Further, the number
,Q proteins produced per transcript is also probably a random process. The
@mmw-orroénﬁ_ovm, explanation for this is as follows. We can roughly
divide the gene expression process into four stages: (1) RNAP binding to the
Promoter, (2) transcription initiation, (3) RNAP arrival at the end of a gene
and (4) competitive binding of ribosomes and RNA degrading enzymes to :\Hou
RNA H._,msmoz.ﬂ:. The probability of RNAP being bound at its promoter is
moﬁm:d_moa by the partition function of operator/promoter states that enters
Into the calculation of the curve in Figure 6. The probability of transcription
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initiation is very roughly a first-order rate process whose rate constant can be
read off the figure. The time until transcription initiation, after RNAP has
bound to its promoter in a given state, is distributed approximately exponen-
tially (McAdams and Arkin, 1997). Elongation then proceeds by a series of
independent steps each exponentially distributed in time. The arrival time at
the end of a gene is, therefore, the sum of a set of independent exponential
distributions (one for each nucleotide in the sequence) which has the form of a
I'-distribution.

Finally, the number of proteins per transcript is determined by how many
ribosomes can bind to the ribosome binding site on the transcript before the
transcript is degraded by an RNase protein. These two processes are often
competitive, so ribosome binding temporarily protects the transcript from
degradation. Thus, the question arises of how many ribosomes can bind before
degradation by RNase occurs. This is analogous to asking how many heads
does one get before one gets a tail when flipping a biased coin. Such processes
are described by a geometric distribution. Each of these distributions can be
rather broad and skewed. Consequently, the pattern of protein production
from a single promoter can be expected to be burst-like and erratic.

When all of the above arguments are put forth in a chemically more rigorous
fashion, the dynamics of gene expression may be described by a chemical
master equation (McAdams and Arkin, 1997). Figure 8 shows the pattern of
protein production from a model of the A phage Py promoter (McAdams and
Arkin, 1997). Each curve is one realization of the stochastic gene expression
process started from the same initial conditions in identical cells. Our theoreti-
cal model indicates that individual cells can have quite different expression
patterns. There is ample experimental evidence that this is indeed the case in
cell populations (Novick and Weiner, 1957; Ko, 1992; Ross et al., 1994; Siegele
and Hu, 1997). The implications of this noise for the control of cellular
behavior and development, and for the engineering of reliable genetic circuitry,
has been discussed in detail (McAdams and Arkin, 1997, 1998, 1999; Arkin et
al., 1998). .

5.2.3.4 Electrical and chemical frequency filters

Since biological signals can be periodic, as described in Section 5.2.3.2, and
noisy, as described in Section 5.2.3.3, a consideration of the frequency-depend-
ent responses of chemical reactions to time-varying chemical signals is in
order. A frequency dependence can be considered to be a type of filtering. In an
electrical context, frequency filters are devices that accept a time-dependent
input and differentially pass on some frequencies in the signal, while suppress-
ing others to different degrees.

3
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Figure 8. Master equation simulation of stochastic gene expression from a P, r-like
promoter in three initially identical cells. For details see Section 5.2.3.3. QuuoB
McAdams and Arkin, 1997.)

The two basic, passive electrical filters, the low-pass filter and the high-pass
filter, are represented in Figure 9. The amplitude of each frequency component
of the output signal is always less than, or equal to, the corresponding ampli-
tude in the input signal. These small circuits are composed of ‘linear’ elements
(resistors and capacitors) and thus are noise filters as weli as frequency filters.
The spectrum of the output signal is the superposition of the filtered ampli-
tudes of each frequency component. The filter causes no interference among
the differént components of the input signal to arise in the output signal.

Chemical low-pass filter A chemical version of the low-pass filter is shown in
Figure 10 (top). The input is the amplitude of time-varying (positive) input ofa
chemical species; the output is the amplitude of the concentration of species A.
The frequency response function has the same fall-off as that of the low-pass
filter. However, this ‘filter’ can (at low frequencies) amplify a signal as well, since
it has a factor of ¢’ in the numerator. In fact, any network of such linear
chemical reactions (with one input) is a low-pass filter. The additional reac-
tions between the input and output change the phase retardation of the signal
as well as the exact shape of the monotonically decreasing filtering profile.

ﬂrﬁiom_ band-pass filter As soon as a nonlinear chemical reaction is con-
sidered, there exists the possibility of band-pass filtering (all chemical systems,
like all electronic systems, are low-pass at high enough frequencies). As an




136 A. P. Arkin

Low-Pass Filter

Vin IJ>>>\||q Vou 0.9 /r
08 //
07

V. < ] 05 N

il 0.4 ™~
Vour (1+ 0?R2C2)12

N

0.3
0 02040608 1 1.21.4
()

High-Pass Filter

<5|_ Vout . _ | — '
=) .\
= ' ;
>3 \

- 0.2
Vgs_ R

Vour (RZ+ 1/(@? C2)12

Y
0 02040608 1 1214
o

. Figure 9. Electrical frequency filters. (Top) A filter that passes only _os. frequencies (a
low-pass filter). (Bottom) A filter that passes only high frequencies (a high-pass filter).
For details see text in Section 5.2.3.4.

example, consider the bimolecular reaction shown in Figure 10 (bottom). In
this reaction scheme, y must be less than or equal to P, which, in turn, must be
equal to RB. Solving the Riccati equation that describes this system analyti-
cally is at best difficult, but very good asymptotic solutions may be found. The
filtering profile shown in Figure 10 (bottom) shows a pronounced band-pass
region between the critical frequency, w,, and k,. This particular chemical
circuit is admittedly artificial, since the constraint that ‘P match RB’ is not
likely to be met in biological systems. The example demonstrates, however,
that chemical systems can be both band-pass and low-pass filters. Note,
however, that this does not describe a linear filter, and if the driving signal has
many frequency components, then there are in fact (very small) interference
bands that appear at frequencies not contained in the original signal.

More complex chemical filters The above types of mechanism can be easily
linked in serial or parallel fashion to form very complicated filtering profiles
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Figure 10. The frequency filtering properties of two different chemical mechanisms.
Top: A reaction pathway with linear (first-order) kinetics acts as a low-pass filter. Here,
the concentration of the species A is driven by a sinusoidal influx of material (ampli-
tude = y). The amplitude of the oscillation in A is plotted as a function of the frequency
of the influx species. The analytical equation describing this curve is shown below the
reaction mechanism. Bottom: As soon as a simple nonlinearity is found in the reaction
(second-ordeg kinetics) then the system can behave as a band-pass filter. Here, there is
influx of material from independent sources into species A and B. Species A is driven by
a sinusoidal signal that has an amplitude equal to y around an average influx value of P
(the pedestal). The amplitude of the oscillation in C is plotted as a function of the
driving frequency of the A influx. The equation for this curve is too complicated to
show (see Samoilov, 1997).

indeed, such as notch filters that do not pass some intermediate band of
frequencies. The ability to easily construct complex filters out of relatively
simple chemical reactions suggests that such filtering could be used by biologi-
cal systems to respond differentially to the types of oscillatory input discussed
above. This is particularly interesting when considering, for example, that in T
lymphocytes some expression of some transcription factors are stimulated by
much lower frequencies of cytosolic Ca2* oscillations than others (Dolmetsch
et al., 1997, 1998). Also, although this has not yet been directly observed,
chemical frequencies can allow the demultiplexing of multiple signals carried
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in the frequency spectrum of a signal chemical concentration. For example,
perhaps one hormone could induce one frequency of Ca?* spiking and an-
other could superimpose another. Thus the presence or absence of two exter-
nal signal species could be carried throughout the cell using only one species;
downstream chemical filters could then decompose the signal at the respective
sites of action.

Nonlinear chemical filters do not behave, as was mentioned above, like
linear filters. For example, interference effects can introduce new frequency
components into the output spectrum. Thus these macroscopic kinetic circuits
are not really noise filters, but they may perform more general transform-
ations. Also, these treatments of these circuits assume that the fluctuations in
chemical reactions are negligible. How a given chemical kinetic mechanism
filters its own internal noise is still an open question. However, it is certain that
mechanisms such as molecular dimerization, and other forms of cooperativity,
filter molecular noise to some extent and can therefore lend increased reliabil-
ity to the genetic circuits described above. ,

More complex chemistry can have ever more exotic and interesting behav-
iors. These include analytical delays and strong band-pass effects,
quasiperiodicity and chaos. When the input signal is noisy, some complex
chemical networks can exhibit a phenomenon called stochastic resonance in
which the noise signal improves the detection of very small periodic signals in
the system over some region of power in the noise spectrum (Collins et al.,
1995, 1996; Braun et al., 1997; Astumian and Moss, 1998; Jung et al., 1998).
These examples only underscore the point that biological systems are non-
stationary dynamical systems whose signal-processing machinery may be far
more sophisticated than is generally understood.

5.3 Comments on the parameterization of models, nonlinear systems
and cellular reliability

One of the concerns often voiced about the business-of biological systems
modeling concerns the fact that most mathematical descriptions of biological
processes contain a good many parameters most of which cannot-easily be
experimentally measured. Further, these descriptions are most often sets of
coupled nonlinear differential equations that may, in general, show an extreme
sensitivity to parameters (and initial conditions). Since it is currently difficuit,
at best, to measure all of the kinetic parameters for even isolated network
components, such as enzymes, and since such measurements of in vitro kinetics
are not guaranteed to be the same as those that are obtained in vivo, it might
seem a hopeless task to construct confirmatory and predictive models of
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complex BRNs. This fear is valid; however, there are a number of phenom-
enological observations and mathematical facts that argue that the situation is
not so bleak as might be initially thought.

- The first trivial observation is that all that is nonlinear is not necessarily
sensitive to parameter changes. Extreme sensitivity, such as that found in
deterministically chaotic systems, at least so far, has proven to be a relatively
rare phenomenon in biological and biochemical systems. Though chaos has
certainly been detected at the tissue level such as in heart and brain dynamics,
and on the chemical level in reconstituted and forced peroxidase—oxidase
enzyme systems, it is certainly not the rule in even very complex, nonlinear
biochemical systems. The reason for this must reside in the engineering specifi-
cations for good biological function. Most cells operate in fluctuating environ-
ments (wherein variables such as temperature, pressure, volume and ionic
strength can change unpredictably) and must both detect and use chemical
components that are at very low concentrations and whose kinetics, therefore,
is likely to exhibit large fluctuations in reaction rates. In addition, there is a
finite chance that a given component of a regulatory network may fail, due
either to this noise in its components or to more extreme processes such as
mutations. In order for a cell to survive under such conditions, the function of
its regulatory networks cannot be so sensitive to their parameters (which are
sensitive to these fluctuations) and must be reliable in the face of individual
component failure and mutation. In order to achieve this robustness, cells use
Junctional redundancy and feedback stabilization among other design strategies
to obtain reliable operation.

Barkai and Liebler have suggested that this very insensitivity to parameters
might be one ¢riterion for judging whether or not a particular biochemical
model is reasonable (Barkai and Leibler, 1997). As an example, they have
analyzed various models of exact adaptation in bacterial chemotaxis. This is a
phenomenon in which the ratio of clockwise to counter-clockwise rotation of
the flagellum initially decreases upon cellular exposure to a step of chemo-
attractant, but then returns exactly to the initial basal value, even under
continued (constant) exposure to the attractant. Since this behavior is judged
to be important to the cell’s fitness for survival, Barkai and Leibler (1997) have
argued that the regulatory network that controls this behavior should be
insensitive to changes in its parameters. They propose a schematic model of
adaptation that maintains ‘exactness’ despite order-of-magnitude changes in
one or more parameters, whereas some previous models of adaptation seemed
to require a highly tuned parameter set. However, although the model by
Barkai and Liebler exhibits high reliability in exact adaptation, the time to
recovery is less robust. Experimental measurements on the dispersion of times
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to exact recovery in different mutants of chemotactic E. coli should further
constrain the class of models that can explain the chemotactic behavior (Alon
et al., 1999). An important side-note is that the argument that oo:.m should not
be too sensitive to small perturbations assumes that the perturbations are
natural (i.e. commonly occurring ones). Specific toxins and pharmaceuticals,
hard radiation, and other such ‘artificial’ perturbations are rarely encountered
during the normal course of a particular organism’s evolution. Its BRNs may
therefore be sensitive to very low exposures to these types of attacks.

Biochemical models, therefore, are often subject to a number of restrictive
global functional constraints such as robustness and, in some cases, homeo-
stasis as well as an often large list of experimental data that greatly restricts the
class of models that can explain and predict organismal behavior. If the basic
stoichiometric network of reactions is known, this provides a further restric-
tion on the class of behaviors and the feasible sets of parameters that can
reproduce experimental observations (Clarke, 1981).

5.4 Summary and outlook

The challenges of understanding how these incredibly complicated biological
systems function to the point where we can predict their behavior, control
them and rationally design modifications into them are clear. The chemical
and physical systems that underlie their function operate in regimes of which
we do not yet have a full theoretical facility. They operate asynchronously,
asymmetrically and nonlinearly in fluctuating environments with less than fully
reliable parts. In addition, the systems are rather large and highly interconnec-
ted networks that operate over a large range of time and space scales. Practi-
cally, it is not feasible to derive the equations for each microscopic event that
occurs within and among cells. Some higher levels of abstraction will be
necessary to make useful and rapid analyses. The work presented here has
considered a bottom-up approach that starts with the detailed kinetics of
networks of chemical reactions and attempts to derive when and where such
networks may be dissected into self-contained ‘devices’. It was a hypothesis of
this chapter, and one that is confirmed in part by the literature, that these
devices are regulatory motifs that recur within different pathways of the same
organism and across organisms. The motifs may be realized using different (or
related) biochemical species, but their functions may be the same. The level of
abstraction from the detailed molecular kinetics of each device will be different,
and it is a central challenge to develop methods for making models that can
combine such heterogeneous submodels in a physically consistent way. Also,
in analogy to finding the basis set of protein folds in order to understand the
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principles of protein folding, it would be advantageous to identify a basis set of
such devices, and their restricted class of functions, from which many BRNs
may be constructed. u ‘

Meeting this challenge is especially crucial in light of the accelerated on-
slaught of essentially raw data that has fallen out of new high-throughput
biological measurement devices and their resultant ‘projects’. Genome projects
provide partial parts lists for the cellular machinery. Information technologies
are providing large numbers of hypotheses for predicting protein activity,
structure/function predictions and even network hypotheses. Gene oEw tech-
nology and two-dimensional protein gel/mass spectrometry methods are
beginning to provide quantitative measurements of the condition- and time-
dependent variations in concentrations of mRNA-transcript proteins.
Advanced microscopy and other cell measurement devices are beginning to
create large databases of spatial information, cell motion and cellular interac-
tion data that can be related to changes in ion concentrations and gene
expression. In addition to these relatively new stores of data, there are all the
data generated from the standard biochemical and genetic research communi-
ties as well as massive amounts of clinical and medical diagnostic data. It is one
central challenge to deduce from these data the responsible regulatory net-
works. Such reverse engineering methods are in their very early days (Arkin
and Ross, 1995; Arkin et al., 1997; Liang et al., 1998; Thieffry and Thomas,
1998). .

Theoretical and computational tools developed to dissect and analyze com-
plex biological systems are essentially tools to make more rigorous the process
of hypothesis formation that every biologist must conduct before and after
performing such experiments. These tools provide a central structure for
organizing the data generated by the above techniques. They help to yield new
insights and new biological principles, some of which are discussed above.
Several of these insights have profound implications for biological processes
such as development, facultative infection and other diseases. Finally, these
tools are beginning to aid in the design of novel functions into cells. Since the
engineering principles by which such circuitry is constructed in cells comprise
a mcvﬁrm&, of that used in electrical engineering, it is, in turn, possible that we
will learn more about how to design asynchronous, robust electronic circuitry
as well.
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Part 11

Nonlinear sensitivity of biological systems to
electromagnetic stimuli

Electromagnetic stimuli represent a special class of external perturbations
that are discussed in almost all of the remaining book chapters. Part II
therefore provides important information in regard to the biophysical foun-
dations of interactions between biological processes and electric or magnetic
fields. In addition, experimental examples are described that demonstrate the
nonlinear sensitivity to electromagnetic stimuli of enzymes, single cells and
tissues. The principles of electric field interactions and the functional role of
bioelectric fields are reviewed in Chapter 6 by Paul Gailey. He discusses the
remarkable electrosensitivity of selected biological systems and how oscillat-
ing electric fields may be detected and amplified by biological structures. The
chapter concludes with the description of a model based on the concept of
long-range coherence, which may explain how relatively weak electric fields
may effectively interact with excitable cellular assemblies in the presence of
noise. An electsic field-sensitive cellular oscillator in cells of the immune
system is the subject of Chapter 7 by Howard Petty. He discusses experiments
that have led to the discovery of coherent metabolic oscillations in human
neutrophils, and describes the response of these cells to time-varying chemical
and electric fields. His work shows the critical importance of the phase rela-
tionship between internal cellular oscillations and the esgernally applied field
oscillations in the induction of cellular responses. Direct interactions between
magnetic field stimuli and biological activity is the main theme of Chapter 8
by Jan Walleczek and Clemens Fichwald. Their chapter presents a brief
history of research in this area and then describes work showing that enzyme
activity, including oscillatory enzyme dynamics, may serve as an effective
magnetic field coupling target. Further, they present results from nonlinear
modeling studies that propose mechanisms by which biological processes
may become sensitive to the frequency of oscillating magnetic field perturba-
tions. Finally, Chapter 9, contributed by Stefan Engstrém and collaborators,
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